

Cel szkolenia:

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

What you'll learn

- Differentiate between data lakes and data warehouses.
- Explore use-cases for each type of storage and the available data lake and warehouse solutions on Google Cloud.
- Discuss the role of a data engineer and the benefits of a successful data pipeline to business operations.
- Examine why data engineering should be done in a cloud environment.

Audience

This course is designed for Data Engineers, Data Analysts and Data Architects.

Plan szkolenia:

- Introduction to Modern Data Engineering on Google Cloud
 - Topics
 - The classics: Data lakes and data warehouses
 - The modern approach: Data lake house
 - Choosing the right architecture
 - Objectives

- Compare and contrast data lake, data warehouse, and data lake house architectures
- Evaluate the benefits of the lake house approach
- Activities
 - Quiz
- Building a data lake house with Cloud Storage, open formats, and BigQuery
 - Topics
 - Building a data lake foundation
 - Introduction to Apache Iceberg open table format
 - BigQuery as the central processing engine
 - Combining operational data in AlloyDB
 - Combining operational and analytical data with federated queries
 - Real world use case
 - Objectives
 - Discuss data storage options, including Cloud Storage for files, open table formats like Apache Iceberg, BigQuery for analytic data, and AlloyDB for operational data.
 - Understand the role of AlloyDB for operational data use cases.
 - Activities
 - Quiz
 - Lab: Federated Query with BigQuery
- Modernizing Data Warehouses with BigQuery and BigLake
 - Topics
 - BigQuery fundamentals
 - Partitioning and clustering in BigQuery
 - Introducing BigLake and external tables
 - Objectives
 - Explain why BigQuery is a scalable data warehousing solution on Google Cloud.
 - Discuss the core concepts of BigQuery.
 - Understand BigLake's role in creating a unified lakehouse architecture and its integration with BigQuery for external data.
 - Learn how BigQuery natively interacts with Apache Iceberg tables via BigLake.
 - Activities
 - Quiz
 - Lab: Querying External Data and Iceberg Tables
- Advanced lakehouse patterns and data governance
 - Topics
 - Data governance and security in a unified platform

- Demo: Data Loss Prevention
- Analytics and machine learning on the lakehouse
- Real-world lakehouse architectures and migration strategies
- Objectives
 - Implement robust data governance and security practices across the unified data platform, including sensitive data protection and metadata management.
 - Explore advanced analytics and machine learning directly on lakehouse data.
- Activities
 - Quiz
- Labs and best practices
 - Topics
 - Review
 - Best practices
 - Objectives
 - Reinforce the core principles of Google Cloud's data platform
 - Activities
 - Lab: Getting Started with BigQuery ML
 - Lab: Vector Search with BigQuery

Wymagania:

- Basic understanding of the principles and activities associated with data engineering
- Familiarity with SQL or data management principles
- Familiarity with data warehouse or data lake architecture

Poziom trudności

Certyfikaty:

The participants will obtain certificates signed by Google Cloud (course completion).

Prowadzący:

Authorized Google Cloud Trainer