Training: The Linux Foundation
LFD440 Linux Kernel Debugging and Security

<table>
<thead>
<tr>
<th>FORM OF TRAINING</th>
<th>MATERIALS</th>
<th>PRICE</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>Hardcopy</td>
<td>1450 EUR</td>
<td>4 days</td>
</tr>
<tr>
<td>Traditional</td>
<td>CTAB Tablet</td>
<td>1550 EUR</td>
<td>4 days</td>
</tr>
<tr>
<td>Distance learning</td>
<td>Hardcopy</td>
<td>1450 EUR</td>
<td>4 days</td>
</tr>
<tr>
<td>Distance learning</td>
<td>CTAB Tablet</td>
<td>1450 EUR</td>
<td>4 days</td>
</tr>
</tbody>
</table>

LOCATIONS

Krakow - 5 Tatarska Street, II floor, hours: 9:00 am - 4:00 pm
Warsaw - 17 Bielska Street, hours: 9:00 am - 4:00 pm

TRAINING TERMS

2019-11-26 | 4 days | Kraków
2020-03-16 | 4 days | Warszawa
2020-05-25 | 4 days | Kraków

TRAINING GOALS:

This 4 days course provides experienced programmers with methods and internal infrastructure of the Linux kernel. This course focuses on the important tools used for debugging and monitoring the kernel, and how security features are implemented and controlled. It includes extensive hands-on exercises and demonstrations designed to give you the necessary tools to develop and debug Linux kernel code.

CONSPECT:

- Introduction
 - Objectives
 - Who You Are
 - The Linux Foundation
 - Linux Foundation Training
 - Linux Distributions
 - Platforms
 - Preparing Your System
 - Using and Downloading a Virtual Machine
- Things change in Linux
- Documentation and Links
- Course Registration

- Preliminaries
 - Procedures
 - Kernel Versions
 - Kernel Sources and Use of git

- How to Work in OSS Projects
 - Overview on How to Contribute Properly
 - Stay Close to Mainline for Security and Quality
 - Study and Understand the Project DNA
 - Figure Out What Itch You Want to Scratch
 - Identify Maintainers and Their Work Flows and Methods
 - Get Early Input and Work in the Open
 - Contribute Incremental Bits, Not Large Code Dumps
 - Leave Your Ego at the Door: Don’t Be Thin-Skinned
 - Be Patient, Develop Long Term Relationships, Be Helpful

- Kernel Features
 - Components of the Kernel
 - User-Space vs. Kernel-Space
 - What are System Calls?
 - Available System Calls
 - Scheduling Algorithms and Task Structures
 - Process Context
 - Labs

- Monitoring and Debugging
 - Debuginfo Packages
 - Tracing and Profiling
 - sysctl
 - SysRq Key
 - oops Messages
 - Kernel Debuggers
 - debugfs
 - Labs

- The proc Filesystem
 - What is the proc Filesystem?
Creating and Removing Entries
Reading and Writing Entries
The seq_file Interface **
Labs

kprobes
kprobes
kretprobes
SystemTap **
Labs

Ftrace
What is ftrace?
ftrace, trace-cmd and kernelshark
Available Tracers
Using ftrace
Files in the Tracing Directory
Tracing Options
Printing with trace_printk()
Trace Markers
Dumping the Buffer
trace-cmd
Labs

Perf
What is perf?
perf stat
perf list
perf record
perf report
perf annotate
perf top
Labs

Crash
Crash
Main Commands
Labs

Kernel Core Dumps
Generating Kernel Core Dumps
- kexec
- Setting Up Kernel Core Dumps
- Labs

- Virtualization**
 - What is Virtualization?
 - Rings of Virtualization
 - Hypervisors

- QEMU
 - What is QEMU?
 - Emulated Architectures
 - Image Formats
 - Third Party Hypervisor Integration

- Linux Kernel Debugging Tools
 - Linux Kernel (built-in) tools and helpers
 - kdb
 - qemu+gdb
 - kgdb: hardware+serial+gdb
 - Labs

- Embedded Linux**
 - Embedded and Real Time Operating Systems
 - Why Use Linux?
 - Making a Small Linux Environment
 - Real Time Linuxes

- Notifiers**
 - What are Notifiers?
 - Data Structures
 - Callbacks and Notifications
 - Creating Notifier Chains
 - Labs

- CPU Frequency Scaling**
 - What is Frequency and Voltage Scaling?
 - Notifiers
 - Drivers
 - Governors
 - Labs

- Netlink Sockets**
What are netlink Sockets?
Opening a netlink Socket
netlink Messages
Labs

Introduction to Linux Kernel Security
Linux Kernel Security Basics
Discretionary Access Control (DAC)
POSIX ACLs
POSIX Capabilities
Namespaces
Linux Security Modules (LSM)
Netfilter
Cryptographic Methods
The Kernel Self Protection Project

Linux Security Modules (LSM)
What are Linux Security Modules?
LSM Basics
LSM Choices
How LSM Works
An LSM Example: Tomoyo

SELinux
SELinux
SELinux Overview
SELinux Modes
SELinux Policies
Context Utilities
SELinux and Standard Command Line Tools
SELinux Context Inheritance and Preservation**
restorecon**
semanage fcontext**
Using SELinux Booleans**
getsebool and setsebool**
Troubleshooting Tools
Labs

AppArmor
What is AppArmor?
- Checking Status
- Modes and Profiles
- Profiles
- Utilities

- Netfilter
 - What is netfilter?
 - Netfilter Hooks
 - Netfilter Implementation
 - Hooking into Netfilter
 - Iptables
 - Labs

- The Virtual File System
 - What is the Virtual File System?
 - Available Filesystems
 - Special Filesystems
 - The tmpfs Filesystem
 - The ext2/ext3 Filesystem
 - The ext4 Filesystem
 - The btrfs Filesystem
 - Common File Model
 - VFS System Calls
 - Files and Processes
 - Mounting Filesystems

- Filesystems in User-Space (FUSE)**
 - What is FUSE?
 - Writing a Filesystem
 - Labs

- Journaling Filesystems**
 - What are Journaling Filesystem?
 - Available Journaling Filesystems
 - Contrasting Features
 - Labs

- Closing and Evaluation Survey

** These sections may be considered in part or in whole as optional. They contain either background reference material, specialized topics, or advanced subjects. The instructor may choose to cover or not cover them depending on classroom experience and time constraints.
REQUIREMENTS:

Before taking this course, you should:

- Be proficient in the C programming language.
- Be familiar with basic Linux (UNIX) utilities such as ls, grep and tar.
- Be comfortable using any of the available text editors (e.g. emacs, vi, etc.).
- Experience with any major Linux distribution is helpful but not strictly required.
- Have experience equivalent to having taken LFD420: Linux Kernel Internals and Development.

Pre-class preparation material will be provided before class.

Difficulty level

CERTIFICATE:

The participants will obtain certificates signed by The Linux Foundation.

TRAINER:

Certified The Linux Foundation Trainer.