
Training: Python Academy
High-Performance Computation with Python

www.compendium.pl page 1 of 4

Compendium Education Center Ltd.
ul. Tatarska 5, 30-103 Kraków, tel.: (12) 298 47 77
ul. Bielska 17, 02-394 Warszawa, tel.: (22) 417 41 70

BNP Paribas Bank Polska S.A.
EUR: PL 79 1600 1462 1853 6451 3000 0006
USD: PL 52 1600 1462 1853 6451 3000 0007

Training: Python Academy
High-Performance Computation with Python

TRAINING GOALS:

The requirement for extensive and challenging computations is far older than the computing industry.
Today, software is a mere means to a specific end, it needs to be newly developed or adapted in
countless places in order to achieve the special goals of the users and to run their specific calculations
efficiently. Nothing is of more avail to this need than a programming language that is easy for users to
learn and that enables them to actively follow and form the realisation of their requirements.

Python is this programming language. It is easy to learn, to use and to read. The language makes it
easy to write maintainable code and to use it as a basis for communication with other people.
Moreover, it makes it easy to optimise and specialise this code in order to use it for challenging and
time critical computations. This is the main subject of this course.

CONSPECT:

Optimizing Python programs
Guidelines for optimization.
Optimization strategies - Pystone benchmarking concept, CPU usage profiling with
cProfile, memory measuring with Guppy_PE Framework. Participants are encouraged to
bring their own programs for profiling to the course.
Algorithms and anti-patterns - examples of algorithms that are especially slow or fast in
Python.
The right data structure - comparation of built-in data structures: lists, sets, deque and
defaulddict - big-O notation will be exemplified.
Caching - deterministic and non-deterministic look on caching and developing decorates
for these purposes.
The example - we will use a computionally demanding example and implement it first in
pure Python. Then we look at some algorithmic improvements to speed up the
computation.
Testing speed - solution to measuring how fast a program really run in Python.
Psyco - 'just-in-time-complier' (JIT), allowing to translate parts of the byte code to
machine code. Example are used to show different possibilities of using Psyco.
Numerical calculations with Numpy - basic possibilities of NumPy covered.
Using multiple CPUS with Pyprocessing/multiprocessing.
Combination of optimization strategies.
Overwiew of extensions to Python with other languages.

https://www.compendium.pl/training/900/python-academy-authorized-training-highperformance-computation-with-python
https://www.compendium.pl/

Training: Python Academy
High-Performance Computation with Python

www.compendium.pl page 2 of 4

Compendium Education Center Ltd.
ul. Tatarska 5, 30-103 Kraków, tel.: (12) 298 47 77
ul. Bielska 17, 02-394 Warszawa, tel.: (22) 417 41 70

BNP Paribas Bank Polska S.A.
EUR: PL 79 1600 1462 1853 6451 3000 0006
USD: PL 52 1600 1462 1853 6451 3000 0007

Python Extensions with Other Languages
Introduction to example that will be used in further part of that module.
Use of Python's C-API - Standard Python is implemented in C and offers a comprehensive
API for writing extensions. The basics of this API are taught.
Python extensions with Pyrex/Cython.
Use of DLLs with ctypes - package ctypes allows to acces DLLs or shared libraries from
Python.
Automatic generation of extensions with SWIG - The "Simplified Wrapper and Interface
Generator" allows to make C/C++ libraries accesible from 13 different languages - one of
them is Python. Examples in C as well as in C++ are provided.
Jython - basics of Python in Java implementation. Examples for use of existing Java
classes as well as self writen classes.
IronPython - implementation of Python in .NET allowing access to all .NET features and
making it a first class .NET language right next to C# and Visual Basic.
Use of FORTRAN subroutines from Python - example of usage F2PY to connect
FORTRAN77 as well as FORTRAN90/95 programs with Python. Object-oriented interfaces
to FORTRAN libraries.

Fast Code with the Cython Compiler
Using pyximport to quickly (re-)build extension modules.
Using cython.inline() to compile code at runtime.
Building extension modules with distutils.
Fast access to Python's builtin types.
Fast looping over Python iterables and C types.
String processing.
Fast arithmetic.
Incrementally optimizing Cython code.
Multi-threading outsife od the GIL(Global Interpreter Lock).
Calling into external C libraries.
Building against C libraries.
Writing Python wrapper APIs.
Calling C functions across extension module boundaries.

Numerical calculations with NumPy
Standard arrays and linear algebra library
Array-constructions and array-properties in examples
Speed comparison between dynamically determined Python data types with explicitly
specified NumPy arrays
Correspondence between NumPy and C data types
Slicing and Broadcasting - reading and writing to arbitrary parts of arrays, applying
broadcasting for arrays with different shapes.

https://www.compendium.pl/

Training: Python Academy
High-Performance Computation with Python

www.compendium.pl page 3 of 4

Compendium Education Center Ltd.
ul. Tatarska 5, 30-103 Kraków, tel.: (12) 298 47 77
ul. Bielska 17, 02-394 Warszawa, tel.: (22) 417 41 70

BNP Paribas Bank Polska S.A.
EUR: PL 79 1600 1462 1853 6451 3000 0006
USD: PL 52 1600 1462 1853 6451 3000 0007

Universal Functions - applying many operations on whole arrays independent from their
dimensions, use examples.
Numerical algebra.
Working with missing values - masked and NA-masked arrays to handle arrays with
missing or not valid values.
Customizing error handling - NumPy offers a fine-grained approach to handle errors
without impacting the performance.
Testing support - NumPy includes helpers to write to test code - course introduces to
testing basics with it.

Fast NumPy Processing with Cython
Use of Python's buffer interface from Cython code.
Directly accessing data buffers of other Python extensions.
Retrieving meta data about the buffer layout.
Setting up efficient memory views on external buffers.
Implementing fast Cython loops over NumPy arrays.
Implementing a simple image processing algorithm
Looping over NumPy exported buffers.
Using "fused types" (simple templating) to implement an algorithm once and run it
efficiently on different C data types.
Use of parallel loops to make use of multiple processing cores.
Building modules with OpenMP.
Processing data in parallel.
Speeding up an existing loop using OpenMP threads.

REQUIREMENTS:

Having experience in Python programming.
Basic understanding of C language is helpful - but not required.

Difficulty level

CERTIFICATE:

The participants will obtain certificates signed by Python Academy.

https://www.compendium.pl/

Training: Python Academy
High-Performance Computation with Python

www.compendium.pl page 4 of 4

Compendium Education Center Ltd.
ul. Tatarska 5, 30-103 Kraków, tel.: (12) 298 47 77
ul. Bielska 17, 02-394 Warszawa, tel.: (22) 417 41 70

BNP Paribas Bank Polska S.A.
EUR: PL 79 1600 1462 1853 6451 3000 0006
USD: PL 52 1600 1462 1853 6451 3000 0007

TRAINER:

Authorized Python Academy Trainer.

https://www.compendium.pl/

