Szkolenia Google Cloud

Cel szkolenia

kod: GC-IDEGC | wersja: v1.0

In this course, you learn about data engineering on Google Cloud, the roles and responsibilities of data engineers, and how those map to offerings provided by Google Cloud. You also learn about ways to address data engineering challenges.

 

What you'll learn

Understand the role of a data engineer.

  • Identify data engineering tasks and core components used on Google Cloud.
  • Understand how to create and deploy data pipelines of varying patterns on Google Cloud.
  • Identify and utilize various automation techniques on Google Cloud.

 

Audience

  • Data engineers
  • Database administrators
  • System administrators

 

Plan szkolenia Rozwiń listę

  • Module 1 - Data Engineering Tasks and Components
    • Topics
      • The role of a data engineer
      • Data sources versus data sinks
      • Data formats
      • Storage solution options on Google Cloud
      • Metadata management options on Google Cloud
      • Sharing datasets using Analytics Hub
    • Objectives
      • Explain the role of a data engineer.
      • Understand the differences between a data source and a data sink.
      • Explain the different types of data formats.
      • Explain the storage solution options on Google Cloud.
      • Learn about the metadata management options on Google Cloud.
      • Understand how to share datasets with ease using Analytics Hub.
      • Understand how to load data into BigQuery using the Google Cloud console or the gcloud CLI.
    • Activities
      • Lab: Loading Data into BigQuery
      • Quiz
  • Module 2 - Data Replication and Migration
    • Topics
      • Replication and migration architecture
      • The gcloud command-line tool
      • Moving datasets
      • Datastream
    • Objectives
      • Explain the baseline Google Cloud data replication and migration architecture.
      • Understand the options and use cases for the gcloud command-line tool.
      • Explain the functionality and use cases for Storage Transfer Service.
      • Explain the functionality and use cases for Transfer Appliance.
      • Understand the features and deployment of Datastream
    • Activities
      • Lab: Datastream: PostgreSQL Replication to BigQuery (optional)
      • Quiz
  • Module 3 - The Extract and Load Data Pipeline Pattern
    • Topics
      • Extract and load architecture
      • The bq command-line tool
      • BigQuery Data Transfer Service
      • BigLake
    • Objectives
      • Explain the baseline extract and load architecture diagram.
      • Understand the options of the bq command-line tool.
      • Explain the functionality and use cases for BigQuery Data Transfer Service.
      • Explain the functionality and use cases for BigLake as a non-extract-load pattern
    • Activities
      • Lab: BigLake: Qwik Start
      • Quiz
  • Module 4 - The Extract, Load, and Transform Data Pipeline Pattern
    • Topics
      • Extract, load, and transform (ELT) architecture
      • SQL scripting and scheduling with BigQuery
      • Dataform
    • Objectives
      • Explain the baseline extract, load, and transform architecture diagram.
      • Understand a common ELT pipeline on Google Cloud.
      • Learn about BigQuery’s SQL scripting and scheduling capabilities.
      • Explain the functionality and use cases for Dataform.
    • Activities
      • Lab: Create and Execute a SQL Workflow in Dataform
      • Quiz
  • Module 5 - The Extract, Transform, and Load Data Pipeline Pattern
    • Topics
      • Extract, transform, and load (ETL) architecture
      • Google Cloud GUI tools for ETL data pipelines
      • Batch data processing using Dataproc
      • Streaming data processing options
      • Bigtable and data pipelines
    • Objectives
      • Explain the baseline extract, transform, and load architecture diagram.
      • Learn about the GUI tools on Google Cloud used for ETL data pipelines.
      • Explain batch data processing using Dataproc.
      • Learn how to use Dataproc Serverless for Spark for ETL.
      • Explain streaming data processing options.
      • Explain the role Bigtable plays in data pipelines.
    • Activities
      • Lab: Use Dataproc Serverless for Spark to Load BigQuery (optional for ILT)
      • Lab: Creating a Streaming Data Pipeline for a Real-Time Dashboard with Dataflow
      • Quiz
  • Module 6 - Automation Techniques
    • Topics
      • Automation patterns and options for pipelines
      • Cloud Scheduler and Workflows
      • Cloud Composer
      • Cloud Run Functions
      • Eventarc
    • Objectives
      • Explain the automation patterns and options available for pipelines.
      • Learn about Cloud Scheduler and Workflows.
      • Learn about Cloud Composer.
      • Learn about Cloud Run functions.
      • Explain the functionality and automation use cases for Eventarc.
    • Activities
      • Lab: Use Cloud Run Functions to Load BigQuery (optional for ILT)
      • Quiz
Pobierz konspekt szkolenia w formacie PDF

Dodatkowe informacje

Wymagania wstępne
  • Prior Google Cloud experience at the fundamental level using Cloud Shell and accessing products from the Google Cloud console.
  • Basic proficiency with a common query language such as SQL.
  • Experience with data modeling and ETL (extract, transform, load) activities.
  • Experience developing applications using a common programming language such as Python.
Poziom trudności
Czas trwania 1 dzień
Certyfikat

The participants will obtain certificates signed by Google Cloud Platform.

Prowadzący

Authorized Google Cloud Platform Trainer.

Pozostałe szkolenia Google Cloud | Data Engineering

Szkolenia powiązane tematycznie

Bazy danych

Formularz kontaktowy

Prosimy o wypełnienie poniższego formularza, jeśli chcą Państwo uzyskać więcej informacji o powyższym szkoleniu.






* pola oznaczone (*) są wymagane

Informacje o przetwarzaniu danych przez Compendium – Centrum Edukacyjne Spółka z o.o.

CENA SZKOLENIA OD 2500 PLN NETTO

Najbliższe szkolenia Google Cloud

Harmonogram szkoleń
Google Cloud